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PREFACE 

The purpose of this report is to provide a summary of recent results we have 

obtained in the area of measuring information, as part of a project of the Operations 

Research Center, United States Military Academy. We are interested in both the 

measurement of information gained through activities such as reconnaissance and 

scouting, and the operational implications of possessing varying amounts of information. 

We have developed a measure of effectiveness of information processes which we call 

"information gain." We believe our modest applications of this measure demonstrate its 

potential utility. We hope this report will place our work on a sound theoretical footing, 

and will serve as a guide on how it can be applied. 

The theoretical properties of information gain, together with results from several 

experiments, lead us to hope the concept has a generic quality. If so, the behavior of the 

measure implies interesting fundamental properties of information in operational terms. 

The information gain measure we discuss is relatively straight-forward when one 

models a decision maker's state of uncertainty about his adversary in terms of discrete 

probability distributions over a space of possible states the adversary may occupy. This 

model seems adequate for applications in which it makes sense to imagine a finite set of 

possible states and a probability distribution over this set which may be updated as 

information about the state occupied is received. In these circumstances the measure 

depends only on the probabilities, and not upon any choice of how states are labeled. 

But the situation becomes less obvious when one considers continuous probability 

distributions and associated random variables. Indeed, in using a random variable, one 

implicitly invokes a coordinate system, and hence a specific labeling of points in the state 

space. This can bring seeming paradoxical results, so care must be exercised in use of 

continuous models. Nevertheless, it frequently is useful to employ random variables to 

notationally represent their corresponding distributions, so we are motivated to study 

behavior of the information gain measure in terms of random variables with continuous 

as well as discrete distributions. 



Aside from the applications we describe, perhaps the most interesting result in this 

report is the characterization of the mathematical form of the information gain measure. 

This characterization, together with several associated corollaries, provide insights into 

the nature of information and attributes of information gain. We believe there may be 

applications of some of these ideas to many facets of managing information processes, 

such as optimally allocating information gathering resources, determining the marginal 

value of information and timing decision points, assessing the operational value of 

alternative information levels or processes, and training decision makers to properly use 

information at hand, particularly in cases of very high information levels. 

The report is organized into three parts, as follows. In Part I we give a general 

description of information gain, and some of the underlying ideas and techniques. Part II 

presents a number of examples of a slightly technical nature, and describes several 

applications. Part m is devoted to the characterization theorem and presentation of 

properties of information gain from a more theoretical perspective. Even though we 

frequently cross-reference the parts, they are more-or-less independent. With minor 

referrals to clarify notation and terminology, they may be read in part, in any order. 

THE OPERATIONS RESEARCH CENTER 

The United States Military Academy's Operations Research Center (ORCEN) 

provides a small, full-time analytical capability to both the United States Army and the 

Academy. It typically employs about five full-time Army analysts; at any point in time, 

about a half dozen Systems Engineering Department military and civilian faculty, 

together with students of the Military Academy, are working on a part-time basis on 

ORCEN projects. The ORCEN is co-located with the Department of Systems 

Engineering in Mahan Hall, West Point, NY and is sponsored by the Assistant Secretary 

of the Army (Financial Management). Fully staffed and funded since Academic Year 

1990-199L the ORCEN has made significant contributions to the Army's analytical 

efforts. 

in 
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EXECUTIVE SUMMARY 

A measure is proposed for analytically determining the amount of information 
gained by a tactical battle commander as a result of intelligence, scouting or 
reconnaissance reports. The measure is based on concepts from information theory, and 
involves modeling a commander's uncertainty in terms of probability distributions over 
sets of possible states his adversary may occupy. As the commander gets information, 
these distributions are updated, by various means, to represent his current state of 
uncertainty. The information gain is defined in terms of the "distance" between the initial 
and updated states of uncertainty. 

Based on a set of plausible assumptions about how an information gain measure 
should behave, it is shown the measure must be of a certain form involving the decrease 
in entropy (as defined by Shannon) from the prior to updated distributions. Implications 
of this characterization are presented and illustrated with examples. Applications to 
experiments performed at the U.S. Military Academy are described, including 
• a Janus combat simulation study of the relative reconnaissance performances of the 

Comanche helicopter and an unmanned aerial reconnaissance system; 
• a Janus-based experiment designed to establish links between the level of information 

possessed by a combat commander and the degree of success he enjoys against his 
adversary; 

• a simulation-based design study of intelligent minefields; and 
• development of an information gain MOE for Janus analyses. 
We believe these examples demonstrate the potential utility of the information gain 
measure for a wide variety of applications. 

In developing the measure and working on its application, we found evidence to 
support several tentative observations about information gain. These technical and 
operational observations are drawn in a tactical setting: 
• the information gained in finding an enemy target is independent of the enemy's force 

size; 
finding a terrain cell to be target-free gives relatively greater information gain if Red 
has a very large force than if he has a small force; 
assuming independence in target locations that are actually correlated appears to give 
error in information gain that is much smaller than the respective errors in the 
individual entropy values; 
for a mobile target located at some time to, but unobserved for subsequent times t, the 
shape of the information loss curve may generally be of the form -ln(t2), independent 
of movement rate of the target; 
usually, information gain for a given target will be positive over time, as reconis 
conducted; however, there are cases in which there can be increases in uncertainty as 
additional recon occurs; and 



• from the point of view of extending the definition of entropy for discrete distributions, 
-Zpiln(pi), to continuous distributions, the expression - \f(x) ln(f(x))dx may not be 

appropriate for measuring uncertainty, but integrals of this form may be employed in 
computing information gain for continuous distributions, with an interpretation 
identical to that for discrete distributions. 

In addition we observed an operational behavior in one of our experiments that we 
believe may have more general applicability: 
• a tactical commander does not require information beyond a moderate level in order 

to accomplish his mission, but he can achieve mission success at reduced cost when 
he has additional information. 

VI 



INTRODUCTION 

The Army has recently expressed heightened interest in managing information 
processes related to combat operations. This has generated a need in the analytic 
community for information-related analysis methods. Almost everyone intuitively 
believes information has value in combat, but it is not obvious how the underlying 
relationships might be quantified. It is desirable to measure information and its 
implications upon combat processes so the operational commander might accomplish 
actions such as: 
• assessing the contributions of information to the likelihood of success of various 

battle operating systems; 
• evaluating the information implications of courses of action during wargaming; and 
• allocating effort among alternative reconnaissance, scouting and intelligence systems. 

Incoming data are not information to a decision maker until they inform. In our 
case, the decision maker is assumed to be the tactical commander in conjunction with his 
staff. Commonly used analytic measures of the information a commander receives are 
based on the volume or rate of messages, the message quality, or characteristics of the 
data given in the messages. The cognition of, and response to, information conveyed in a 
given set of data depends upon the receiving commander. A commander mentally 
processes acquired data into his picture of the tatical situation. This human process 
depends on the personality, training, and experience of the commander. Therefore, 
attempting to measure information gain, either by looking at parameters of the raw 
message traffic or attempting to model a commander's mental processes, seems to us to 
be a very difficult approach. 

A more tractable approach might attempt to capture the amount by which a 
commander has been informed as a result of receiving reconnaissance and other similar 
data. One would like to resolve the issue, "How does a commander's state of knowledge 
change when he receives new data containing information?" Rather than attempting to 
measure the level of information a commander possesses at a given point in time, we 
attempt to model the amount of uncertainty the commander faces. We shall describe an 
approach involving modeling a commander's uncertainty about his enemy's disposition in 
terms of probability distributions. As the commander gains information about his 
adversary, the probability distributions are updated to reflect the new state of the 
commander's uncertainty. Using this approach, along with information theoretic 
measures related to the probability distributions, we can measure the changes in 
uncertainty brought about by the receipt of new data. This change in uncertainty is a 
measure of the amount of information gained through receipt of the data. Figure 1 
depicts how receipt of information leads to decreased uncertainty about the enemy 
disposition. 
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Figure 1. Decrease in uncertainty due to information gain. 
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Figure 2. Subset of battlefield information considered in our examples. 

We believe our approach in modeling information gain in terms of decreased 
uncertainty falls somewhere between approaches that model the characteristics of the 
physical communications system and those that attempt to model human cognition and 
response of the decision maker. 

Our work has focused on tactical intelligence information. Figure 2 shows how 
our considerations concern only a subset of potential battlefield information. We deal 
here only with the number and locations of enemy, arguably the most important of 
battlefield intelligence data. Enemy size and disposition data are typically gained through 



reconnaissance, scouting and other defined information system activities. They generally 
do not depend on the intuition and experience of the commander, so there is a generic 
character to the approach we propose. 

Earlier results are reported in [1,2, 3]. We have employed the concept of 
information theory, developed by Shannon [10], to define an information gain metric that 
measures reduced uncertainty due to reconnaissance and other intelligence activities in an 
area of concern to a commander. The idea of using methods of information theory to 
measure effects of reconnaissance, scouting, intelligence, and other activities related to 
preparing for and conducting military operations seems quite natural. 

This paper documents our work on the information gain measure and reports 
several examples of its application in experiments conducted by our students and 
ourselves during the past several years. One of the experiments was aimed at comparing 
reconnaissance platforms operating in a Bosnian scenario; a second experiment was 
aimed at establishing the operational value of information in simulated combat at the 
National Training Center; and a third application was associated with evaluating 
information obtained by an intelligent anti-armor minefield. 

One objective of this work is to facilitate studies of relationships between 
information gained about the enemy's disposition and various measures of combat 
effectiveness. In [1] we describe a modest experiment along these lines, where 
information available to the tactical commander increased in a sequence of stages. A plot 
of a relationship between information gain and combat success is shown in Figure 3, for 
this experiment conducted at USMA last year. A plot illustrating comparison of the 
Comanche helicopter and an unmanned aerial vehicle (UAV) in gaining information 
about the disposition of an enemy force in a hypothetical Bosnian scenario [5] is depicted 
in Figure 4. These experiments and several results are described further in Part II of this 

report. 
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Figure 3. Plot of "mission success" versus information gain, reported in [1]. 
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Figure 4. Sample comparison of a Comanche (lower curve) and UAV (upper 
curve) in a hypothetical scenario [5]. 

An additional objective of our work is to automate the information gain measure 
of effectiveness (MOE) in combat simulations. This should facilitate comparisons of 
various alternative reconnaissance platforms, information gathering tactics, information 
system organizations, and sensors. We are currently working on implementation of 
information gain in the Janus model [11]; a summary of these efforts is given in Part II. 

This report is divided into three parts. Part I gives a general description of 
information gain, Part II describes several applications carried out here at the U.S. 
Military Academy, and Part III is devoted to presenting a characterization of the measure, 
developing several of its properties, and discussing several analytical issues. An 
operationally oriented reader may wish to concentrate on Part I and one or two of the 
examples in Part II. An analyst wishing to apply the measure may benefit from careful 
reading of most of Part II. Readers interested in basic properties and behavior of 
information gain may find Part III of interest. We number sections within parts; Section 
II-3 is the third section within Part II, for example. 



PARTI. OVERALL APPROACH 

1-1. Information Gain 
We have made a small extension of Shannon's information theoretic development 

of entropy to give a characterization of the information gain measure. Suppose p is the 
prior distribution, representing the commander's uncertainty at some specific time, and 
suppose the uncertainty he has at some later time is represented by the posterior 
distribution, p*. In Section III-l we show the information gained in resolving the 
uncertainty in p to that in p*, measured by the information gain function, 8(p,p*), must 
have a certain specific form, under the assumption of four plausible conditions. 

Let S be a finite sample space (representing the set of possible terrain cells that 
might contain a vehicle, for example), and let Q be the set of all (discrete) mass functions 
over S. We denote any "uniform" distribution in Q having exactly n non-zero mass 
values equal to 1/n by the symbol "n", let p, p*, and q be arbitrary members of Q, and 
suppose X, Y, Z and I are jointly distributed random variables on S. We denote the mass 
values in the prior distribution p by pi, p2,... pn and similarly for the posterior 
distribution, p*. 

Theorem (Characterization of the information gain function; see Section III-l): 
If the information gain function, 5(p,p*), satisfies certain reasonable technical conditions 
and has the properties: 

(a) if the outcome Z of an experiment having distribution p is represented as a 
compound experiment where an initial outcome I is observed then the remainder X of the 
experiment is observed conditioned on the value of I, the information gain in observing Z 
can be expressed as the information gain in observing I, plus the average (over values of 
I) of the information gain in observing X, given I; and 

(b) the information gain, 5(p,p*), in resolving the uncertainty in p to that in p* 
may be computed in terms of any intermediate stage of information which gives 
uncertainty represented by the distribution q, as follows: 

S(p,P*) = 5(p,q) + 5(q,p*); 
then the information gain function must be of the form 

5(p,p*) = -SieS[piln(pi) +p*iln(p*i)]. 

The two conditions described above can be paraphrased in operational terms, as 
follows: 

(a') receiving a message containing the location of the enemy's 40 tanks has the 
same information content as two messages in which the first says the enemy has 40 tanks 
and the second reports their locations; 

(b') the gain function measures cumulative changes in uncertainty so that the 
information gain from p (TOC shift change brief #1) to p*(TOC shift change brief #2) is 



independent of intermediate levels of uncertainty q (snapshots of a fluid battle space that 
occur between shift change briefs)'. 

As the above expression for information gain reveals, the information gain 
function measures the difference between the randomness of the prior and posterior 
distributions, using Shannon's entropy definition of randomness [10]. The 
characterization theorem in Section III-l thus asserts that, under plausible conditions, 
information gain must be given by the decrease in entropy from p to p*; that is, 5(p,p*) = 
(entropy of p) - (entropy of p*). 

Notes On Entropy: 
• If a discrete system can be in state j with probability p(j);j=l, 2,...,n, the entropy, e, of 

the system is defined to be e = -LpQ)ln(p(j)), where the sum is over all states j for 
whichp(j)>0. In information theory, the logarithm is often taken to have base 2 (and 
the measure is in units of bits, for "binary digits"), but any other logarithm will differ 
from this by a multiplicative constant, so that need not concern us. We shall use 
natural logarithms in our work, so our information gain units might be called "nits" 
(for "«atural digits"). Entropy, in information theory, has a connection with the 
thermodynamic concept of entropy [12], but this is not particularly useful in our 
applications. In a somewhat related application, entropy has been used in scoring the 
accuracy achieved by learning sensor models [9]. 

• If a system can be in any of n possible states, the entropy of the system can range 
between 0 (when the exact state of the system is known) to ln(n) (when the state of 
the system has maximal "randomness," which occurs when the state of the system is 
uniformly distributed over the possible states). In the first case, where p(l)=l (say) 
and the remaining p(i)'$ are zero, the sum -Ip(j) ln(p(j)) collapses to a single term so e 
= -1 ln(l) = 0. If the searcher knows the enemy vehicle's location, there is no 
randomness and the entropy is 0.0. The second case, where p(i) = 1/n for all i, gives 

e = -Ip(j) ln(p(j)) = -n (1/n) ln(l/n) = -ln(l/n) = ln(n). 
• If the uncertainty represented by the prior distribution is totally resolved, so the 

specific Red state is determined by the information received, the posterior mass 
function will be degenerate at the state in question; we denote such a distribution by 
1, in keeping with the notation conventions listed above. Then 8(p, 1) represents the 
information gain in totally resolving the uncertainty in p, which can be interpreted as 
the randomness in the prior situation, represented by p. It is readily seen that 8(p, 1) 
= -Zpiln(pi) = (entropy of the prior distribution p). In our applications, this is 
interpreted as a measure of the degree of the Blue commander's uncertainty about a 
specific aspect of Red's disposition. 

• The claim that ln(n) is the maximal value of e is easy to prove (using mathematical 
induction, for example; an alternate proof, based on Jensen's inequality, is given in 
[7]). If the searcher knows nothing at all about the location of the enemy vehicle, he 

1 Tactical Operations Centers work around the clock. Normally there is a briefing between shift changes 
designed to update the new crew as well as the commander on the current state of operations as well as 
those events that transpired during the shift. 



may assume it is equally likely to be in any one of the n possible cells, and the entropy 
takes on its maximum value, 5(n, 1) = ln(n). 

• Entropy and information gain are dimensionless, and they do not depend on the labels 
used for outcomes in the sample space (cells). These measures depend only upon the 
probabilities of the possible outcomes. This is entirely reasonable in our application, 
because the labels of cells and the coordinate system of the battle area are inventions 
of the analyst; they are not inherently relevant to the amount of, or gain in, 
information about target location. Because entropy depends only on the probability 
masses in a discrete distribution, it is possible to denote such mass functions by 
vectors of mass values, such as p, as we have been doing. Such "probability vectors" 
have non-negative components that sum to one. 

• Since zero is not in the domain of the logarithm function, we define 0-ln(0) to be 0.. 
This extends the domain of f(x) = x-ln(x) by right continuity to include x=0, and 
simplifies notation in what follows. 

1-2. Modeling Uncertainty 
We model a Blue Commander's uncertainty about his Red adversary's state in 

terms of probability distributions relating to Red's size and disposition. For example, the 
distribution of the location of a given Red system from the Blue commander's perspective 
can often be represented as a bivariate probability distribution over the battle area. Figure 
5 shows a hypothetical example of such a distribution over a 1km X 1km battle area. In 
this figure the battlefield is partitioned into one hundred 100m X 100m terrain cells. The 
height of the plotted surface above a given terrain cell represents Blue's model of the 
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Figure 5. Prior distribution of location of a target. 



relative likelihood that a given Red system, a tank, for example, is in that particular cell. 
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Figure 6. Posterior distribution of location, after search of the shaded cells. 

As intelligence data are collected, the commander may gain information causing the 
values of the probabilities in his model of target presence in the cells to change. For 
example, if a terrain cell is scanned by a Blue sensor and a Red target is not detected, the 
probability the target is present in the cell should decrease from the value it had before the 
search. The process of changing the probability of target presence as a result of sensor 
activities is referred to as "updating" the probability distribution. An update of the prior 
distribution shown in Figure 5, to take into account a search of the shaded cells that 
indicated no target presence, is shown in Figure 6. The decrease in uncertainty from the 
prior distribution to the "updated" (more informed) posterior distribution reflects the 
amount of information gained from the report that a target is not present in the cells 
inspected. If information is received in sequence over time, a corresponding sequence of 
updates can be implemented, as we describe in more detail below. 

1-3. Measuring Information Gain 
We first consider the problem of measuring the information gained through 

reconnaissance in military operations. Traditional measures are usually based on 
detections of enemy forces by reconnaissance units or platforms [8]. Measures of 
effectiveness such as "percent of enemy vehicles detected," "time required to detect a tank 
company in hull defilade", and "average range at detection" do not give credit for  - 
reconnaissance efforts that suggest targets are not located in certain areas of interest to the 
battle commander. Finding that the enemy isn't located in a certain area can be of 



considerable value, and it is desirable to devise measures of information that quantify 
such results. As demonstrated in the example below, the information gain measure does 
take into account both indications of target presence and target absence in searched areas.. 

The method we propose can be described as follows. Compute the entropy of the 
prior distribution, ep = -EjSs Piln(pi). This may represent the uncertainty Blue has about 
the location of a particular Red system, for example. We compute Blue's total entropy or 
uncertainty about the locations of all Red systems by summing the entropy measures of 
the individual Red systems. (This is valid under an assumption of independence; in [2] 
we argue it provides a reasonable approximation of total entropy when unit locations are 
mildly correlated; an example is given in Section III-2.) The total entropy represents 
Blue's level of uncertainty about the location of Red units. 

When one or more of the terrain cells are searched through reconnaissance, and the 
results are transmitted to the commander, he may gain information causing the values of 
the probabilities of target presence in the areas to change. A reconnaissance indication 
that a particular cell does not contain a target drives the location probability for that cell 
towards zero, accompanied by increases in the probabilities over all other cells. In 
several of our applications, it is possible to compute such changes using Bayes' formula 
[13]. This takes into account the capabilities of the recon system's ability to detect and its 
false alarm rate, both given as functions of the sensor, target, characteristics of the area 
searched, the search geometry, and sensor-target kinematics. Updating the target location 
probabilities by Bayes' formula is appropriate whether the target is located in a given 
search or not. Next, compute the entropy of the posterior distribution, 
ep* = -Zjes p*i ln(p*i). Typically (but not always) entropy will decrease with the changes 
in location probabilities associated with search effort, so the information gain, (ep-ep*), 
usually will be positive. This measure can incorporate the combined effects of searches 
by many individual systems, each with a set of sensors looking in assigned or selected 
areas, working together as a system mix against an array of enemy targets. 

Employing the information gain measure requires the analyst to model uncertainty 
in a way most suited to his or her particular application. As the discussion above 
illustrates, computing information gain is a simple summation of natural logs once the 
probabilities are known. The analyst's challenge is in developing and updating the 
probability distributions as the tactical process plays out. 

The original prior distribution may be estimated or assumed, based on terrrain 
features (water bodies, terrain slope, etc.). Lacking that, one may begin with a uniform 
distribution over the sample space. Updating the distribution, however, may require 
modeling and analysis. The next section suggests several possible approaches to the 
updating process. 

1-4. Approaches to Updating 

Information Gain with Bayesian Updating 
Suppose a battle area is considered to be composed of a large number of small 

cells C\, C2,... CN, and suppose reconnaissance or observation during combat can provide 
information implying a given cell Cy holds a given target, T, with detection probability 



Pp e(0,1) (given TeCj). Similarly, suppose the false alarm rate for this recon platform 

on this target in this area is Pp. To simplify notation, let "I(j) " denote "recon information 

indicates Tis in C/," and let "T(j)" denote the event 'Tis in cell Cy." The current state of 

information, intel and recon about the location of T is represented by the current 
probability distribution for the location of T (which is the prior distribution for updating 
purposes). Letpj denote the prior probability of T(j):j=l,2,...,N. We may use Bayes' 

formula to update the current distribution to take into account new information about 
whether T is in cell/. 

To summarize: P[I(i) | T(j) ] depends on the scenario, recon tactics and 
capabilities of the sensors involved. We are assuming that, for the current search of cell 

P[I(j)\T(j)]=PD;™d 
P[l(j)\T(i)] = PF,M. 

Then by Bayes' formula, 

P[T{jV{J)l pDpj+pF(\-Pjy 

and 

P[T(i)\iU)] = ^h -; / * J. 
PDPJ+PFV-PJ) 

As a special case, relevant for Janus play of combat, suppose the false alarm 
probability of Blue's sensor system is zero. Then application of Baves' formula eives 

P[T(j)\I(j)] = 1.0; 
P[T(i)\I(j)] = 0.0; 

P,      . 
P[T(0\~IU)] = 

and 

P[TU)\~IU)) = 

\-PDPj 

<\-PD)Pj 

\~PDPj 
Here, "~I(j)" indicates the event "recon in cell/ fails to detect the target." 

To compute values of information gain resulting from specific recon activities, the 
following procedure can be used: 
a. divide the region of interest into cells which might contain Red targets and 
which may be searched by Blue sensors; 
b. determine Blue's prior probability distribution representing the marginal 
distribution of location of each Red target, before the search begins; 
c. assume the search proceeds as a sequence of searches in designated cells, in 
specified time intervals; 
d. when a set of cells has been searched, use Bayes' formula to update the current 
"prior" distribution of each target's location to obtain the posterior distributions 
for all targets; 
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e. compute the information gain, for each Red target, resulting from the search of 

the designated cells; ... 
f. accumulate and store the sum of information gains for all Red targets, and the 
time of completion of the search of the specified cells; 
g loop through steps (d) - (f) for the duration of the search activity; 
h plot the composite (over targets) cumulative (over time) Information gam as a 
function of time into the search. The result is the "information trace (similar to 
the "battle trace" introduced in [4]), which gives an overview of the cumulative 
gain in information over time, as the search progressed. 

Notes: 
One can plot the rate of information gain versus time to display how well 
the search activity is doing at various points in time. 
One can compute only the "end of battle," final cumulative information 
gain if it is not desired to track gains (or gain rates) over time. 
It is 'easy to accommodate searches of sets of cells, rather than single cells, 
in each time period, using Bayes' formula in much the same way as shown 
above  We give some details in Section II-1. 
One can also measure the information gain due to receipt of information about 
the number of Red targets present. This can be done using the compound 
experiment properties described in Section III-3. We show an example of this in 
Section 1-4 and discuss an application in Section II-3. 

Application of Bayesian Updating to a Target Detection Process 
Figure 5 on page 9, represents Blue's prior distribution of the location of a Red 

target in a hypothetical situation. The area of regard is partitioned into 100 cells, 
corresponding to row and column designations in the domain below the plotted surface. 
The "peaks" on the plotted surface represent spikes of probability over the corresponding 
cells and can be interpreted as areas where the Blue commander feels Red is most likely 
to be'  Likewise, depressed regions on the plotted surface represent cells where Blue 
believes Red is least likely to be deployed. Note that the relative probabilities represented 
bv these spikes are actually discrete values over particular terrain cells. The smoothing 
into continuous peaks is a function of the graphical software for presentation purposes 
and is not represented in the calculations. 

Further suppose that Blue deploys a reconnaissance sensor to search for the enemy 
svstem and the recon systems searches a path represented by the darkened terrain cells in 
the lower right portion of the battlefield. In this example we employ a reconnaissance 
system armed with a .83 probability of detection and no false alarm sensor. Given a Red 
system is in a particular terrain cell that the sensor searches, the probability the sensor 
detects the Red system is .83; given a target is not present the probability the sensor 

"detects" a target is zero. 
Suppose the reconnaissance sensor progresses from cell to cell and does not rind 

the Red system. Then the probability the enemy system is in the searched cells is driven 
towards updated values closer to zero, as shown in Figure 6, on pagelO.   These new 
probabilities are calculated using Bayes' formula. In this example the Red system was 
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not found during any of the searches of the shaded terrain cells by Blue's sensor. Even 
so, because there is information in sensor indications a target is not present in certain 
cells, the commander's uncertainty (and hence the entropy) decreased with the updated 
distribution, so there is positive information gain. The values of information gained as 
these cells are searched is shown in the following table. 

CELL SEARCH INFORMATION 
# GAIN 
1 0.00557525 
2 0.005598649 
3 0.005622117 
4 0.005645573 
5 0.005669005 
6 0.005692402 
7 0.005715751 
8 0.005739039 
9 0.00576225 

Information Gain With Combinatorial Updating 
Suppose Red has N targets that are distinguishable with at least one of Blue's 

sensors, and the area of concern to Blue consists of R cells. If no cell could be occupied 
by more than a single target, Red could deploy his forces in any of RPN = R!/(R-N)! 
(permutation of/? areas taken N at a time) ways so this is the number of points in the 
sample space (set of possible Red states). From Blue's point of view, before recon begins 
(and lacking intel, prior knowledge, etc.) we assume each of these deployments is equally 
likely, so the initial entropy of Red's deployment from Blue's perspective is 

e0 = \n(RPN)=    £ln(/). 

Now let us consider the information gain as recon proceeds from this starting 
point. 

Case 1: Recon detects a target in one of the cells. 
We now have N-l targets in R-l cells, so the entropy drops to ln( R.JPN-J )and 

the information gain is 

R R-l 
Z      In®- I ln(j)=ln(R). 

j=R-N+l j=(R-l)-(N-l)+l 

Note there is substantial information gain if the number of cells R is large and recon 
discovers a target. Note also this gain does not depend on N. Thus, under that stated 
assumption, from an information theory point of view, the information gained in finding 
an enemy target is independent of the enemy's force size! 

Case 2: Recon determines a cell is target-free. 
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In this case, we have /»/targets in R-l cells, so the entropy decreases to Infc.jPri) 

and the information gain is 

R R-l R 

Z    ln(j)- I       ln(j) = InfjjJ. 
j=R-N+l        j=(R-l)-N+l 

Note this gain is greater for JV closer to R. Thus from an information theory point of 
view, finding a cell to be target-free gives relatively greater information gain if Red has 
a very large force than if he has a small force. Indeed, if Red's force is very small and is 
deployed over a large area (i.e., N«R), finding that a specific cell contains no target 
gives little gain in information. Similarly, if Red's force is very large and is deployed 
over the same area, finding that a specific cell contains no target gives a greater amount 
of information gain. 

Information Gain With Subjective Updating 
In Section II-2 we discuss an application where information gain was computed 

using subjective estimates of an expert to update the probability distributions. 

1-5. Non-Monotonicity of Entropy 

Usually, entropy for a given target will decrease over time, as recon is conducted. 
However, there are cases in which there can be increases in entropy as additional recon 
occurs. This is caused by the fact that when a cell having high prior probability of 
containing the target is searched without success, the posterior may actually be projected 
toward a more uniform distribution, hence increasing entropy. This can be illustrated by 
a simple example involving one target placed at random in one of three cells and a sensor 
with detection probability 1/2. 

Suppose the prior vector is (1/3, 1/3, 1/3), so the initial entropy is e = 1.099. If a 
search of cell 1 fails to detect the target, the posterior distribution of target location 
becomes (.2, .4, .4), so entropy drops to 1.055. If a subsequent search of cell 2 is 
unsuccessful, the updated posterior is (.25, .25, .50), so entropy is further reduced to 
1.040. So far, so good. The entropy has decreased steadily as recon has searched the first 
two cells. Now suppose a search of cell 3 fails to find the target. Then the updated 
posterior is (1/3, 1/3, 1/3), so entropy has suddenly increased back to 1.099. This is not a 
contradiction. In this case, the search of the three cells has not yielded information about 
the target location, so the information gain is zero. The recon system has been working 
diligently but has achieved absolutely nothing in terms of gaining information about the 
whereabouts of the target. 

Numerical evaluations for examples similar to the foregoing show it is possible to 
have entropy oscillating between increases and decreases as recon is conducted. These 
situations are probably not of practical concern, since the largest effect in reducing 
entropy is associated with detecting and locating a target. It is to be noted again that 
nothing is wrong with increases in entropy as recon proceeds, under certain conditions. 
Indeed, a negative entropy decrease is correctly showing the amount of information lost 



through the recon conducted up to that point. Overall information gain may be nil or 
even negative if a large fraction of the available areas have been searched without success 
or if much time has passed since mobile targets have been located [3] (see Section III-5). 

If entropy is used to measure progress on an optimal search for a target for which 
strong prior information is available, we expect entropy to increase as the search 
proceeds. For example, in a search for the sunken ship SS Central America [13], the prior 
distribution of the ship location was carefully developed, taking into account information 
from communications before the ship sank, survivor accounts of the sinking, and ocean 
currents and winds in the general area at the time of the sinking. This gave a prior that 
may be envisioned as a set of hills, where the target is thought to be most likely located 
under the areas where the hills are highest. The search was sequenced so as to search 
where the prior was highest, which should minimize search time required to locate the 
ship. As areas were searched, Bayes' formula was used to update the prior, and search 
was next directed to where the updated prior had the highest hill. As this process is 
followed, the search effort is directed so as to drive the updated prior toward a uniform 
distribution, hence in the direction of increasing entropy. It would appear that in this 
application, entropy could again be used to measure the progress of the search. In this 
case, however, the amount of increase in entropy in a time period might be a measure of 
the search progress. Of course, once the ship is located, the posterior distribution has a 
single spike of probability mass at the known location, and entropy drops to zero. 

1-6 Combining Information Gain on the Number of Targets with 
Information Gain on Location 

Recall that we are measuring number as well as location of enemy systems. Let 
us illustrate the compounding property described in Section III-3 by removing the 
assumption in the preceding example that it is known a target is present in one of the 
three cells. Now, suppose we believe there is a target present with probability 0.5, and no 
target present with probability 0.5. With each search of a cell, we must now update both 
the prior distribution of the number of targets present and the prior distribution of the 
location of a target, given one is present. Recall we are assuming the sensor used in the 
search has detection probability 0.5 and false alarm probability zero. The total entropy is 
computed using the relationship shown in Section III-3. 

To illustrate for the first step (search of cell 1 without detecting a target), the 
posterior probability there is a target present in one of the cells may be calculated as 
follows, where we let "Cl" denote the event "Cell 1 is searched and no target is found." I 
denote the (random) number of targets present, T denote "target position" and p denote 
the prior probability that a target is present: 
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iV-llCl]- 1CII/-H-P 
P[Cl|/ = l]-Jp + P[Cl|/ = 0]-(l-Jp) 

{f[Cl|/ = l,rece//l]-(l/3) + f[Cll/ = l,rgce//l]-(2/3)}-;p 

P[Cl|/ = l]-/? + P[Cl|/ = 0].(l-p) 

112. 5 
{2"3+^        _    6* 

For p=l/2, this gives posterior probability a target is present equal to 5/11 (so the 
posterior probability that 1=0 is 6/11). The location prior (1/3,1/3,1/3) is updated to (1/5, 
2/5, 2/5) as shown below. 

The total entropy before search is 
d + ern = ln(2) + (l/2)ln(3) = 1.242 

and that after the first search is 
ei + em = -(5/H)ln(5/ll) - (6/1 l)ln(6/l 1) - (5/ll)[(l/5)ln(l/5) + 2(2/5)ln(2/5)] = 1.168. 

Therefore the information gain as a result of the first search is 1.242 -1.168 = 0.074. 
Results for similar computations for searches of cells 2 and 3 in turn (each 

resulting in a "no target present" indication) are summarized in the following table: 

Stage P loc. dist'n ei e-rn e inf. Gain 

Prior 1/2 1/3,1/3,1/3 .6931 1.0986 1.2424 - 

Search 1 5/11 1/5,2/5,2/5 .6890 1.0549 1.1685 .0739 
Search 2 4/10 1/4,1/4,2/4 .6730 1.0397 1.0889 .0796 
Search 3 7/19 1/3,1/3,1/3 .6581 1.0986 1.0629 .0260 

Note that total entropy, taking into account uncertainty in the number of targets present, is 
monotone decreasing as the search proceeds, in contrast with the case for e^i discussed in 
the preceding example. 

1-7. Extensions and Further Research 
Further work is needed concerning the information gain on a mobile target 

as time since detection increases. In Section III-5 we present an example 
involving a crude bivariate normal model of the posterior distribution of location 
as a function of time since detection. It ap-ears quite easy to incorporate more 
realistic models of possible target movement in the Bayesian updating of location 
distributions. This would give useful models of losses in information (negative 
information gains) over time, with applications such as optimal scheduling of 
resources to reestablish target location. 

Several analysts have suggested the weighting of location information by 
"importance factors" representing some attribute of interest to the Blue 
commander. For example, the Blue commander may wish to weigh location 
information about a target that represents a threat to his own forces more heavily 
than that for a non-threatening target. It would be quite feasible to devise a 
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weighted information measure, provided a credible weighting scheme could be 
developed. 

We have discussed information gain primarily in terms of knowledge about 
locations and numbers of enemy targets. But the principle can be applied to any sort of 
"unknown" quality, provided it is feasible to list possible values of the quality, and that it 
makes sense to model state of uncertainty about the quality in terms of probability 
distributions. For example, commanders talk about gaining information about "the 
enemy's intent." If one could list the sample space of plausible enemy intents, place a 
prior distribution over this space, and update the distribution as the scenario plays out, 
then information gain about enemy intent could be measured. 
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PART II. APPLICATIONS OF INFORMATION GAIN 

We describe three applications we have carried out in experiments here at the U.S. 
Military Academy, and discuss an on-going project aimed at implementing an 
information gain measure of effectiveness with the Janus combat simulation. These 
examples illustrate the variety of methods that can be used to "update" prior distributions. 
The first involves search for targets by two competing reconnaissance systems, played in 
the Janus simulation. It uses Bayesian updating described in Section 1-4 in connection 
with a target detection process. The second application uses target location "probability 
contour maps" developed by an expert at several stages of an experiment designed to 
investigate how information links to combat success. The third application uses 
continuous probability distribution models of target location with a single stage of 
updating based on information conveyed by intelligent mines. 

II-l. Comparing Reconnaissance Systems [3, 5] 
We employed information gain as a measure of reconnaissance results in 

conducting a modest Janus driven experiment designed to compare two recon platforms, 
crudely representing the Comanche helicopter and an unmanned aerial vehicle (UAV) [5]. 
The experiment involved a Bosnian scenario developed by LTs Carroll, Glaser, and 
Mitchell, who, as cadets, worked along with one of the authors in the Operations 
Research Center (ORCEN) at the US Military Academy. The cadets carried out a series 
of experiments using the Janus combat simulation. They collected data and carried out 
data reduction using the ORCEN facilities as part of a capstone course in Systems 
Engineering. Each simulated recon battle lasted ten minutes of game time and involved 
a single recon platform searching for 50 identifiable targets hidden among 400 
500m X 500m terrain squares, or "cells."   The recon systems were able to search 261 of 
these cells in each trial, following the assigned routes in the scenario. 

The entropy associated with each individual target was computed at times 0, 1,..., 
10 minutes, and the total entropy was calculated as the sum of the individual target 
entropies. The following assumptions were made: 

1. As far as Blue knows, each Red target could be placed in any of 400 
cells by Red. Actually, Red has placed all 50 targets in cells that will be 
sear ched by Blue (i.e., somewhere within the set of cells Blue will search 
during the recon battle). 
2. For Janus runs, the false alarm probability, PD, is zero (i.e., Janus does 
not play false alarms by weapon system sensors). 
3. Target locations were independent, from Blue's point of view, and 
targets were stationary. 
4. Each recon system had detection probability at least 0.05 against each 
Red target. 
5. Blue had no initial information about target location and thus the prior 
distribution was taken to be uniform over the 400 possible cells involved. 
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Therefore, the starting entropy for each target (at time zero) was ln(# cells) 
= ln(400) = 5.991. 

For each individual target, the following comments hold: 
1. Only 261 cells were searched by Blue during the recon battle. 
2. With false alarm probabilities equal to zero for each recon system, 
entropy drops to zero when the target is detected and located (because the 
posterior distribution of the target's location then becomes a vector of the 
form 1 = (0,0,...,0,1,0,...,0)), and remains at this value (stationary target). 
3. The detection probability of a given recon system against a given target 
was taken to be the relative frequency of detections in the ten Janus runs 
with that system. If a given target was never detected in the ten runs, the 
detection probability was set equal to 0.05. 

Method of Bayesian Update Used in the Janus Experiment 
The probability vector (p\, p2,..., P40Q) was updated at the end of each minute, 

using Bayes' formula. As mentioned above, if the target was detected and located during 
a minute period, the posterior distribution is of the form (0,0,...1,...,0), so the entropy for 
that target drops to zero at that point in time. If cells in a set K = {k, k+1, ..., k+m} were 
searched during the minute and the target was not detected, the posterior was computed as 
follows. 

Let T(j) denote "target in cell/," and 1(K) denote "target found in the set K={k, 
k+1, ..., k+m}." Let/» be the detection probability andp; be the prior probability of the 
event T(j), as before. 

Case (a): posterior for cell j, jgK. 

P[~l(K)\T(j)]-p 
P[TU')\~ I(K)] =  J 

£/>[- J(*)|r(y)]•/>,+£/>[- I{K)\T{j)\.Pj 
jtK jeK 

Pj Pj 

ZPJ+T(
1
-P)PJ      

D 
JtK yeAT 

Case (b): posterior for cell j, jeK. 

P[~ I(K)\ T(j)]-p 

JtK jeK 

PJQ-P) Pj(l- P) 
YJPJ+YJ(\-P)PJ     D 
jeK jzK 

where D is the common value of the denominator in the last expressions in the two cases. 

The computation of the posterior distribution is easily accomplished by exploiting 
the fact that the denominator D is the same in both cases above. We proceed as follows: 
for all jeK, in the current prior probability vector, replace the current prior probability the 
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target is in cell/, pf, by pj*-(l-p), where p is the detection probability of the given recon 

system against the target in question. Then sum the elements of the resulting vector and 
unitize the vector by dividing each element of the vector by the sum. This vector is the 
current posterior at the time point in question, and it becomes the prior for the succeeding 
time period. Note the same posterior results if one imagines the cells were searched one 
at a time, in any given order, and the posterior was computed in a sequence of 
corresponding "one-cell" updates. 

For each target at each time point in each run with each recon system the entropy 
is either zero (if the target has been detected and located) or the value e = -Zpj* ln(pf), 

the summation extending over the 400 elements corresponding to the 400 boxes 
available. A simple computer program was written to carry out these computations. 

Plots of the average entropy value, over ten Janus runs, are shown in Figure 7, for 
the UAV and Comanche recon platforms. Plots of information gain, (averaged over ten 
Janus runs) for the UAV and Comanche are shown in Figure 8. The similarity in shapes 
of the information gain plots for the UAV and Comanche indicates both systems were 
performing best around minutes 2 to 4 in our scenario, with another period of increasing 
performance near the end of the recon battle. These observations are in accord with 
results expected by the experimentation team, based on details of the scenario design and 
experience with other simulated recon battles using Janus. Note the plot of information 
gain for the UAV is considerably higher than that for the Comanche, indicating the UAV 
performed better in this scenario. This is a counter-intuitive result, and subsequent 
investigation revealed this might have been caused by inaccuracies in the Janus modeling 
of the Comanche. 

200 
4 6 
Time (Min) 

8 10 

Figure 7. Average Entropy for the UAV (lower curve) and the Comanche (upper 
curve) in ten Janus runs. 
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Figure 8. Average information gains for the UAV (top curve) and Comanche 
(bottom curve) in ten Janus runs. 

II-2. Studying Relationships Between Tactical Intell And Battle Results 
We investigated the effects on combat results of varying levels of information a 

combat commander has about his adversary [1]. We performed an experiment in which 
individual subjects, playing the role of task force commander, developed detailed plans 
for conducting operations against an enemy defender. Each commander ultimately 
prepared five combat plans for conducting the same operation against the same enemy 
force, but with increasing levels of information about the enemy's composition and 
disposition. We designed these information levels to correspond closely to doctrinally 
realistic increments of information available during the planning process. 

For each phase of the experiment we gave subjects the respective information set. 
We required subjects to produce the following products of their battle planning exercise: 
1) Task Organization, 2) Concept Sketch and Graphics, 3) Fire Support Plan, and 4) 
Synchronization Matrix. Once a subject turned in his plan we issued him the additional 
information set for developing his next plan. We then entered the subject's plans in the 
Janus Simulation Model. Once a subject completed all five plans, we conducted ten 
Janus runs with each plan. Subjects were not allowed to see results of these runs until the 
experiment was completed. 

Measures of Effectiveness 
We captured data to support computation of over a dozen measures of 

effectiveness (MOEs) in order to measure the effectiveness of simulated combat   . 
operations. Below we summarize results for only two MOEs:   Blue Losses (BL) and 
Number of Combat Vehicles on the Objective (VO). 
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Computation of Information Gain 
To compute information gain, we estimated probability distributions of Red unit 

locations for each phase by employing an expert. Our expert used the cumulative 
information set available at each phase, knowledge of Army doctrine, and knowledge of 
the terrain to construct the probability distributions. In this regard our expert played a 
role very similar to that of the intelligence officer preparing decision support products for 
the commander. The final product of our expert's estimate was what we called a 
"probability contour map" (PCM). 

As its name implies, the probability contour map (PCM) partitions the total area 
of operations into sub-areas having given relative probabilities of containing a Red unit. 
Just as elevation contours on a topological map display areas of (approximate) given 
distinct elevation, a probability contour map uses probability contours to display areas of 
fixed distinct probability. In his expression of relative likelihood of Red unit locations, 
our expert first expressed the likelihood of containing a Red unit as a categorical variable 
taking values: 1) very unlikely, 2) unlikely, 3) likely, 4) very likely. We represented these 
categories of likelihood numerically as 0, 1,4, and 9, respectively. This numerical scale 
is a subjective assignment; in [1] we discuss the lack of sensitivity of entropy decreases to 
changes in this representation. 

PROBABILITY CONTOUR MAP 
EXPERT'S PRIOR DISTRIBUTION 

Figure 9. Hypothetical prior PCM (right) related to dessert terrain data depicted 
graphically at the left. 

For our particular scenario, we developed PCM's for fighting systems and 
separate PCM's for obstacles. The process of building a PCM is analogous to developing 
the modified combined obstacle overlay. As an example, consider the case where nothing 
is known about the enemy. In this case the assignment of probabilities may depend 
entirely upon the terrain, as represented in maps of the area of operations. We asked our 
expert to consider each portion of the terrain and answer questions such as, "If the enemy 
had tanks, what is the likelihood they would be deployed here?" The answers to such 
questions determine the relative likelihood assignment of the particular area (0, 1, 4, or 9 
for our application). For example, areas of terrain that are obviously unusable by a 
particular type of unit will receive a likelihood of zero. Areas of terrain that are 
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obviously key terrain will receive a weighting of 9, and so forth. For each phase, our 
expert continued this process until the entire area of interest had been assigned a relative 
likelihood value. A hypothetical prior PCM is shown in Figure 9. 

The area of interest in our application was a 10 km by 14 km zone bounded by the 
line of contact and friendly maneuver graphics. As the intelligence and reconnaissance 
process progressed we developed subsequent PCM's in the same way. Once the expert 
learns the location of one tank he may change his assessment of the probability 
distribution of the location of other tanks.   The same holds for obstacles. Knowing the 
location of one obstacle helps one deduce the location of others and thus update the PCM 
for obstacles. Likewise, knowing the location of an obstacle helps one estimate the 
locations of vehicles and knowing the location of vehicles helps one estimate the location 
of obstacles. Thus the PCM's for fighting systems and obstacles are interdependent. A 
hypothetical posterior PCM representing an update of the prior shown in Figure 9, upon 
receipt of intelligence confirming the locations of two enemy tanks, is shown in Figure 
10. 

Figure 10. Posterior PCM (right) reflecting intelligence depicted at the left. 

CONFIRMED ENEMY SYSTEMS PROBABILITY CONTOUR 
EXPERT'S POSTERIOR DISTRIBUTION 

Determination of Target Density and Approximating Mass Function 
Let R0, Rl, R4 and R9 denote the regions over which the bivariate density 

described above has value proportional to 0, 1, 4, or 9, respectively, and let 
A(R0),...A(R9) be the areas of these regions. Estimates of these areas were obtained as 
follows. We estimated the areas of the portions of the four regions falling within each 1 
km square, to the nearest. 1 km2 , and then individually summed these estimates for each 
region type over the 140, 1 km squares comprising the area of interest. We felt 
unjustified in attempting to estimate the areas of the four region types within any 1 km 
square to any resolution smaller than .1 km2. This was due to the problem of visually 
estimating such areas. Note, for example, the Janus display of a Red unit location uses an 
icon that, with location error, locates a precise unit location only to a resolution of about 
. 1 km2. Thus, there is some error in our area estimates, but we believe they are 
sufficiently accurate for entropy calculation purposes. (We report results of a modest 
sensitivity analysis below.) In what follows, we refer to the imaginary . 1 km2 sub- 
regions of each 1 km square as "cells." 
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We determined a bivariate density function over the 10 km x 14 km area of 
interest so that: 
• the integral of the density over the 10 km x 14 km area of interest equals 1.0; 
• the density is constant over each region R; and 
• the ratio of the density at a point in R\ to that at a point in Rj is bj / bj, where b; and bj 

are elements of the set {0,1,4,9}. 
It follows that the density function value (height) at any point within R is 

yiV^);forbi=0'1'4'9- 
'       i 
Now consider a discrete approximation of the forgoing density function, based on 

the . 1 km2 cells described above. We note the probability a particular Red unit is located 
in a given cell within region R is 

pi=(.m^bJA(RJ)=Abi/K, 
j 

where we let K denote the (constant) value in the denominator. The approximating mass 
function is defined to have values equal to the p's at the center points of the 
corresponding .1 km2 cells. This mass function therefore is defined at 1400 points within 
the area of concern. Note it has fixed value pi on 10- A(Rj) of these points. 

Let us model the position of a given Red unit as having this discrete distribution 
over these 1400 cell centers. Then the entropy measure of Blue's uncertainty about this 
location is 

1400 4     ]£ ( \}j  \ 

e = -5>, Info) = -X-TH ~t 10 "W 

= _±h^l[ln,lbj)-HK)] 
7=1 K 

= ln(K) - JbjA(Rj)ln(bj)IK- ln(.l) 
7=1 

= ln(£)-^-ln(.l), 
4 

where L = YJbJA(RJ)ln(6y). 
7=1 

It can be seen that the term -ln(.l) = ln(10) = 2.3 is related to our division of each 
square km into 10 cells, in the formation of the discrete approximation of the density of 
Red unit location. The approximation of the continuous density by a discrete mass 
function with "resolution" 1/10 km2 introduces the constant term ln(10) into the entropy 
value. This may at first seem troubling, because the level of resolution employed in the 
discrete approximation step is somewhat arbitrary; we could have used cells of area .01 
km2 and gotten entropy values differing by a constant value involving ln(100), for 
example. However, our application involves taking the difference of the calculated 
entropy at two successive phases to be the information gain between the phases. The 
constant ln(10) adds out (as would the constant corresponding to any fixed level of 
resolution in the approximation) when the decrease in entropy is computed. Therefore, 
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for our application, the level of resolution has only the minor effect of adding some noise 
in estimating the values of the A(Rj), as mentioned above. Note this is closely related to 
the behavior of information gain when continuous distributions are approximated by 
discrete distributions, discussed in Section III-4. 

Information Gain Calculation 
To complete the computation, we determined the entropy for a single Red unit of 

a given type, multiplied by the number of units ofthat type (42 for vehicles and 22 for 
obstructions), then added these values to obtain the total entropy for the phase in 
question. A summary of the total entropy at each phase and the information gain from the 
previous phase is shown in Table 1. The rightmost column entries are actually 
cumulative information gain; we used the label "cum. inf." for simplicity here. 

Phase Total Entropy Information Gain Cum. Inf. 
maximum* 463.63 

1 299.23 164.40 0 
2 290.79 8.43 8.43 
3 277.03 13.76 22.19 
4 267.54 9.49 31.68 
5 224.98 42.56 74.24 

Table 1. Total entropy and information gain by phase of the experiment. 
* Based on a uniform distribution over 1400 cells. 

Some Results 
Because one subject appears to have performance markedly different from most of 

the others, we estimated the over-all (subjects) mission accomplishment profile by the 
median VO (vehicles on objective) response at each information level. A plot of median 
VO against information level (as measured by cumulative information gain) is shown in 
Figure 11. 
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Figure 11. Plot of median VO versus information gain. 
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Figure 12. Plot of median blue losses (BL) versus information gain. 

Figure 12 shows a plot for the MOE, "Blue Losses," which is a resource 
consumption MOE. The plot shown in Figure 11 suggests there is not significant - 
improvement in the ability of the Blue commanders to achieve success in the mission 
objective, as information level increases beyond that available at about the third phase. 
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However, there is continuing decrease in blue losses over the entire span of five phases, 
as shown in Figure 12. This suggests that a commander does not require information 
beyond a moderate level in order to accomplish his mission, but he can achieve mission 
success at reduced cost when he has additional information 

II-3. Intelligent Minefield Design 
Possible allocations of "intelligent mines" (IMs) were investigated in connection 

with a systems engineering design effort by faculty and cadets at USMA involving 
intelligent minefield design [6]. The intelligent mine is an anti-armor system which 
incorporates features of the "wide area mine" (WAM) with the addition of "smart" 
engagement planning and communications capabilities. Both the WAM and IM sense 
and attempt to track targets using acoustic and seismic sensors. If a target is deemed by 
these mines to be within range, they attack the target. The IM has the added ability to 
communicate with other Ims. If two or more IMs simultaneously track the same target, 
then the tracking accuracy is considerably improved, resulting in higher hit probability 
against the target. The IM can also communicate to the Blue commander limited 
information about approaching targets (number of targets sensed, approximate locations 
and whether a target was engaged by the IM). 

We developed a computer simulation (in Visual Basic) which could be used to 
evaluate the relative performance characteristics of alternative anti-armor minefield 
configurations. Each configuration was defined in terms of the numbers of conventional 
mines (CMs), WAMs, IMs, and artillery-deployed mines (FASCAMs) and their 
placement in a square minefield 1.5 km on a side. Data generated by the simulation 
supported computation of a variety of measures of effectiveness, such as "fraction of 
attacking tanks killed," "average delay time," and "average penetration distance of an 
attacking tank." Since one of the presumed advantages of the IM over the WAM is its 
ability to convey information to the Blue commander, it was deemed desirable to devise 
measures of effectiveness appropriate for measuring this feature. 

We applied the information gain measure, based on Bayesian updating in a single, 
"end of battle," stage. Two types of prior distributions were devised; one representing 
the prior distribution of location of each attacking tank and the other representing Blue's 
prior notion of the number of Red tanks that might be approaching the minefield. 
Posterior distributions were computed, in a single stage, for the "post attack" picture. 
During an attempt by a platoon of Red tanks to traverse the minefield, only a fixed set of 
response types by the IMs was possible: 

1. no IM detected a Red tank; 
2. WAM or CM detonations were sensed, but no IM tracking; 
3. WAM or CM detonations were sensed, some IM tracking occurred with 

possible engagements, but no simultaneous IM tracking; and 
4. two or more IMs track and engage targets, in simultaneous pairs at one or more 

points in the attack. 
In each of these cases, certain inferences can be drawn about the number and 

locations of targets based on information transmitted to Blue by the IMs. We developed 
simple models of the posterior distributions, using elementary conditioning to update the 
distribution of the number of Red tanks and assigning "equivalent areas of resolution" for 
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the locations of the Red tanks. For example, in the first case above, no information about 
the attacking Red tanks was transmitted to the Blue commander, so the posterior 
distributions are the same as the prior distributions, and the information gain is zero. 

In the second case, Blue can surmise that the number of targets in the minefield 
area is at least some number d*, based on the number of detonations sensed and the 
probabilities tanks were killed as a result. Blue also gains location information for this 
number of targets equivalent to locating them with a uniform distribution over a certain 
fraction of the minefield area (which depends on the number of detonations and the 
number of IMs present in the minefield). If d* < 4, the remaining tanks (of the platoon of 
four tanks) are assumed to have location distributions uniform over a region the size of 
the minefield. The posterior distribution of the number of Red tanks is taken to be the 
conditional prior distribution, given at least d* tanks are attacking the minefield. 

The third case is similar to the second. The posterior distribution of the number 
of attacking tanks is just the conditional distribution described for case 2. With IM 
tracking, the location of d* tanks is captured within a uniform distribution over a circle 
with radius related to the tracking radius of the IM and the number d*. 

In the fourth case, again we simply conditioned the prior distribution of the 
number of Red tanks on the event [# tanks >= d*]. Due to the improved location 
accuracy with simultaneous tracking by IMs, we assume the posterior distribution of d* 
tanks is uniform over circles of radius related to the lethal radius of an IM, the number of 
IMs present, and d*. 

The initial and final values of entropy were calculated using the relationship 
e = ETeX|T + ei discussed in Section III-3, where "ET" denotes expectation with respect to 
the appropriate distribution (prior or posterior) of the number of attacking tanks, T, and 
eX|T denotes the joint entropy of location (X) of T tanks, where T <= 4, since there are 
four tanks in the attacking platoon. The conditional entropy for the prior situation was 
computed as the sum of the marginal location entropies of the four attacking tanks. The 
posterior value was computed in a similar manner. The sum of the marginal entropies of 
tank locations over the four attacking Red tanks given T was taken to be 
eX|T = min{T, d*}-[entropy over reduced area for the given case] + 

(4 - min{T, d*})-[entropy over area of minefield]. 
These entropies are computed with assumed uniform posterior distributions over the 
"reduced" areas described above. 

II-4. Information Gain (MOE) in a Janus Postprocessor 
We are currently working on a project to incorporate information gain as a 

measure of effectiveness available to users of Janus [11]. We hope to incorporate this 
measure within a post-processor being developed at USMA, called "Jets."  The 
following discussion outlines the computational approach we are following, which is an 
extension of the presentation in Section II-1. Our goal is to exploit searches by sensors 
on Blue vehicles as a battle is simulated within Janus. We hope to obtain a non-intrusive 
capture of detection probabilities for each cell of the battle area, for each Blue sensor, for 
each time period. The cells are those employed by the Janus software; a typical battle 
area includes about 2,000 cells, so we are dealing with updating each component of a 
2,000-element probability vector at the end of each time period. 
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Now, consider the case (relevant for Janus computations) in which the probability 
of detection is a function of Blue's sensor, s, and any cell, c, in which it looks sometime 
during the time increment. Denote this probability by Ds,c. Moreover, let Ds,c = 0 for any 
cell c not "inspected" by the given sensor, s, during the time interval. The probability of 
non-detection by all sensors looking in the j"1 cell is the product of the probabilities of 
non-detection by each sensor looking in that cell in the given time period, assuming 
independence among the sensors. Let pc denote the prior mass in cell c. Then the 
posterior probability vector for the target in question, given it was not located in the time 
increment under consideration, is found by unitizing2 the vector whose c01 element is 

A -Uensors,s( 1 " lJs,c)Pc 

using the convention mentioned above for cells not inspected by the various sensors. 
This posterior updating can be carried out in one operation for all entries in the prior 
vector (corresponding to cells making up the battle area). Thus, if pt denotes the prior 
vector at time t (a stochastic vector having k elements), and dt+) denotes the non-detection 
probability vector for the f* time interval, whose elements are composed of the values 
ns (1-Ds,c), then the posterior at time t+1 is pt+! = pt<S>dt+i / | pt<S>dt+i | where "®" 
denotes component-wise multiplication and "| ■ |" denotes the sum of components in the 
vector involved (so this division constitutes unitization of the vector pt®dt+i). As 
mentioned before, this holds only for targets not located in the time interval; otherwise 
the posterior is of the form 1 = (0,0,...,1,0,...,0), where the "1" is in the location 
corresponding to the cell in which the target was found. 

Updating and Incorporating Information about the Number of Red Units 
We now exploit the compound experiment result presented in Section III-3 to 

incorporate uncertainty the Blue commander has about the number of Red assets as well 
as their locations. 

For a given type of Red asset, say the ith type, let Tj denote the number of such 
assets placed in the Blue commander's area of concern by the Red commander. From 
Blue's point of view, Tj is unknown; Blue considers a random variable Aj representing 
possible values of Tj. Thus from Blue's point of view, A; has a distribution defined by a 
mass function pf which assigns probabilities to the possible numbers 0. 1,2,... of type i 
assets present in his area. Then the total entropy for type i units, eb is given by 

e; = EAi[eX|Ai] + eAj, 

where x is the position vector of the Red assets. Applying the conditioning argument, and 
assuming independence among targets, gives total entropy for type i units, 

ei = EAi[Ti • ex]i] + eAi 
= Tj eX|i + eAi, 

where eAi is the entropy of the (current posterior) distribution of Aj. In this equation, ex(1 

could be computed as discussed above, Tj is known3, and eAi is easily computed from the 

2 A non-zero vector with non-negative components is unitized by dividing each component by the sum of 
the components. This process transforms a vector proportional to a probability vector into a probability 
vector (i.e., a vector whose components form a probability mass function). 
3 The value of T; is the total number of Red assets of type i that remain undetected by Blue. We note the 
value of Tj will generally decrease as time into the battle increases. As noted earlier, the location entropy 
of detected assets is zero, which accounts for the decrease in Tj after each detection of a type i asset. 
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posterior distribution of A, formed by updating the prior distribution at the end of each 
time period. 

Bayesian Updating of the Distribution of the Number of Red Units 
If m units of type i are detected in a time period At, then the prior distribution of 

Aj at the beginning ofthat period, pi, can be updated using Bayes' formula as before. Let 
us illustrate the essentials of this argument for the first time period, for which the prior 
distribution of Aj is the mass function pi(x) = P[Aj = x]; x = 0, 1, 2,..., Tj. If Blue's 
sensors looked in s cells during the first time period and m units of type i were detected, 
we wish to compute the conditional probabilities P[A; = x | m units detected]; x = m, 
m+1,..., Tj. This posterior distribution would then become the prior going into the 
second time period. Note the conditional mass function evaluated at any of the values 0, 
1,..., m-1 is equal to zero, for Blue has detected m such units. 

If Blue's sensors looked in s cells during the period At and did not detect any units 
of type i then a crude approach to computing the posterior of Aj could be based on 
combinatorial arguments. For the purposes of updating p;, imagine (temporarily) that the 
Red units of type i are uniformly distributed over all the cells, say N in number, of the 
area of regard. Then the number of units of type i present in a sample of s cells out of N 
is hypergeometric distributed. Since the number of cells sampled is generally quite small 
relative to the total number of cells present, this distribution is approximated well by a 
binomial distribution with parameters s and Tj/N, where Tj is the total number of Red 
units of type i that remain undetected by Blue, and N is the total number of cells in the 
area of concern to the Blue commander [14]. 

Given no type i units were seen in searching s cells in the time interval At, the 
conditional probability that A; = k can be approximated using a binomial distribution and 
Bayes' formula. The binomial model is used to calculate the probability no type i unit 
was detected, given s cells were searched (no "successes" in s "trials", with a certain 
success probability per trial. Specifically, 

P[At = k\noneseen]oc(l- — DyPl(k) ;k = 0,1,2,..., 

where D denotes the detection probability in each of the s cells searched (by all the 
sensors looking in the cells). The "one-trial" success probability parameter in the 
binomial distribution is approximately equal to kD/N because, given k out of N cells 
contain targets, and assuming equally likely locations, the probability a randomly selected 
cell contains a target is k/N, and the probability the target is detected given it is present is 
D. Under these assumptions, the overall probability of detecting a target in a given cell is 
[k/N]D. 

The argument for finding the posterior given m units of the type in question were 
detected in the first time period is similar, and Bayes' formula gives posterior density 
values proportional to the binomial mass evaluated at m, multiplied by the prior value. 
In the more realistic case where the detection probabilities vary over cells and the units 
aren't uniformly distributed over the N cells, the expression above should be revised. We 
can model the probability a target is found in a given cell c by Tj-p(c), where Tj is the total 
number of undetected assets of the given type and p(c) is the current prior probability a 
given asset of this type will be in cell c. Similarly, the detection probability in cell c by 
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any Blue sensor can be written in the form I - [rigors, ,(1 - DSiC)]r where Ds>c is the 
probability of detection of a target in cell c by sensor s, given a target of the given type is 
actually in the cell. It then follows the expected number of detections may be modeled 
by 

1 i'^cells, c P(C)L 1 "flsensors, s, looking in given cell, cO ~Ds,c)] 

= Ti|p®(l#-D')| 
= Ti[|p®l#|-|p0D'|] 
= Ti[l-|p®D'|], 

where 1# is the N-component vector of 1 's, D' is the vector of expressions of the form 
nSensors, s, looking in given cell, c(l-DSjC), and p is the vector of location probabilities (with 

components p(c); c = 1, 2,..., N). Note the value of | p ® D' | is available from the 
computation of the posterior of p, as discussed above. 
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PART III. DEVELOPMENT AND PROPERTIES 

III-l. Characterization of the Information Gain Function. 
We show the information gain function, 8(p,p*), must have the form of entropy 

decrease, under the assumption of four plausible conditions (which are discussed at the 
end of this section). This result implies there is no room, under our assumptions, for the 
question, "Why use this specific mathematical definition for measuring information 
gain?" 

Notation: Let S be a finite sample space, and let Q be the set of all (discrete) 
mass functions over S. We denote any "uniform" distribution in Q having exactly n non- 
zero mass values equal to 1/n by the symbol "n", let p, p*, and q be arbitrary members of 
Q, and suppose X, Y, and I are jointly distributed random variables on S. We denote the 
mass values in p by pi, P2,... pn and similarly for p*. 

Theorem (Characterization of the information gain function): 
Let 8(p,p*) be a function mapping QxQ into the set of real numbers, satisfying the 
following four axioms: 

(1) 8 is continuous; 
(2) for any fixed p*, 0 < n < m implies 8(n,p*) < 8(m,p*); 
(3) for a compound experiment I followed by X (denoted "I;X"), 

8(I;X,1) = 8(1,1) + Ei8(X,l 11)4; 
(4) for any q eQ, 8(p,p*) = 8(p,q) + 8(q,p*). 

Then 
8(p,p*) = k[Zp*i ln(p*i) - Zpilnfa)], 

where the summation is over positive masses in p* (p, respectively) and k is an arbitrary 
positive constant. 

Proof: 
Note: Axioms (1) - (3) imply 8(p,l) is, up to a positive constant, the entropy of the 
distribution p, 8(p,l)= -£piln(pO, by Shannon's results for message sources [10]. For 
completeness, we give an expanded version of the argument here, in the context of our 
notation. Axiom (4) is then used to extend the result to information gain. 

Use mathematical induction to establish 
8(sm,l) = mS(s,l); s > 1 an integer, (1) 

as follows. The proposition is obviously true for m = 1. Let us illustrate the induction 
step by examining the case for m = 2: 

4 We extend the notation to allow random variables having given distributions to represent those    . 
distributions as arguments in 5, and we let "E" denote expected value with respect to the distribution of I. 
By the notation conventions at the beginning of this section, 1 is a mass function assingning mass unity to a 
single point of S. 
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Let Z represent an experiment consisting of choosing a point at random from a set 
S containing s2 points. Suppose S is partitioned into s subsets each containing s 
points. We may view an outcome on Z as being determined through a compound 
experiment I;X, where I indicates a randomly selected partition subset from which 
a point X will be chosen at random (see our discussion of Axiom (3) below). It 
follows that I has uniform distribution s and, conditionally upon the outcome on I, 
X also has uniform distribution s. By Axiom (3), it follows that 

m-l 
S(sz,l) = 8(s,l) + E, 6(s,l) = 25(s,l). 

Assume 8(s " ,1) = (m-l)8(s,l). By Axiom (3), with an indicator variable I showing 
which of s sets each having sm" points from which to choose a point at random, we have 
5(sm,l) = 5(s,l) + E, Z(smA ,1) = 6(s,l) + (m-l)5(s,l) = mö(s,l), and equation (1) follows 
for integer s > 1. 

Let t be an arbitrary (fixed) integer greater than one, as is s. Then by the above, 
5(tn ,1) = n8(t,l). For any positive integer n there exists a positive integer m such that 
sm<tn<s1 " m+l , so m ln(s) < n ln(t) < (m+l)ln(s), thus 

m ^ ln(r)     m +1    m    1 
— <—— < = —+ - . 

ln(j) n n n    n 
so (2) 

ln(/)    m 

ln(j) 

By Axiom (2), 8(sm ,1) < 8(tn ,1) < 8(sm+1,1), that is, by equation (1), 
mS(s,l) < n8(t,l) < (m + l)8(sm+1,1) 

or 

so 

m ^S(t.T) m    1 
< — + —. 

ö(s, 1)     n    n 

m <?(t,D 
£(s,1) n 

Combining this with equation (2), by the triangle inequality it follows that 
ln(0    £(t,D 

n ln(s)    £(s,1) 

and, since s and t are arbitrary integers greater than 1, and n may be chosen arbitrarily 
large, it follows that 

8(s,l) = kln(s);s>l. (3) 
By Axiom (2), it follows that k > 0. 

If s = 1, then by Axiom (4), 8(1,1) = 8(1,1) + 8(1,1), so 8(1,1) = 0. Thus equation 
(3) holds for the case s = 1 as well. 

We now extend the result of equation (3) from uniform distributions to 
distributions having rational masses. If the t components of p are positive rational 
numbers, they may be expressed with common denominator, in the form pi = n/I^; i = 
1, 2,..., t, where the n's are positive integers. Let an experiment Z have a uniform 
distribution Znj. Partition S with Enj points into t subsets with m, n2,..., nt points, 
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respectively. We can realize an outcome on Z by performing the compound experiment 
I-X, where I indicates selection of a subset from the partition, and X indicates 
(conditional) random selection of a point from the subset indicated by I. The random 
variable I has distribution p and, given I = i, X has uniform distribution m. By Axiom (3) 

it follows that 
5(Enj ,1) = 8(p,l) + Ei 8(m ,1)- 

By equation (3), it thus follows that k-ln(Znj) = 8(p,l) + 2j k-ln(nj)-pj, so 

S(p. 1) = *[ln(2>,.) - X Pt ln(".)] 
j i 

= k$rjPl-ln(£nj)-
1LPiWni)] 

i j ' 

(4) 

= -£][><ln 
«. 

I», 
^ j 

= -ky£ipiWpt). 
i 

We invoke Axiom (1) to extend equation (4) to mass functions p with arbitrary 
positive mass values (i.e., where components of p may be irrational). For any mass 
function p there exists a sequence {pm} of mass functions with rational masses 
converging to p, so continuity of 8 implies 

limffl_£(pm,D = £(lim_pm,D = 8{p.% 
But, by equation (4) and continuity of the function x ln(x), 

limm_ S(pm. 1) = lim_(-Ä:2>: lnQO) = "*5>ln^ • 

Finally, we extend the foregoing to the information gain function S(p,p*). By 
axiom (4) , taking q = p = p*, we have 

8(p*,p*) = 8(p*,p*) + 8(p*,p*), 
so it follows that S(p*,p*) = 0. This, with another application of axiom (4), implies that 
8(l,p*) = -S(p*,l). With yet another application of axiom (4), 

5(p,p*) = S(p,D + 8(l,p*) = 8(p,l) - 8(p*, 1) = - Spiln(pi) + Sp*; ln(p*0, 
up to a positive multiplicative constant. Q.E.D. 

Remarks: 
• We shall assume the multiplicative constant is unity. One might regard the constant 

to be related to the choice of base for the logarithm function, which we assume to be 
the natural logarithm. 

. 8(p,l) is the information gain realized in totally resolving uncertainty inherent in an 
experiment with distribution p, since 1 is degenerate at a point of S. 

Corollaries: 
(1) If p and p* have the same set of masses, S(p,p*) = 0. 

Note p and p* could be different mass functions, however. 
In particular, for any p eQ, 8(p, p) = 0. 



(2) For fixed p*, among distributions p with exactly n positive masses, 5(p,p*) is 
maximal for p = n. 

The distribution over a given set with the most randomness is the uniform 
distribution over that set. 

(3) For fixed p, 8(p,p*) is maximal for p* = 1. 
A distribution over S with the minimal randomness is one degenerate at a point of 

S. 

(4) For two compound experiments I;X and J;Y, 
8(I;X, J;Y) = 6a, J) + E,8(X, 111) - Ej5(Y, 11 J). 

In particular, for compound experiments I;X and I;Y, 
8(I;X,I;Y) = E,8(X,Y|I). 

This gives a result for information gain with compound experiments. The second 
expression is interesting in that the information gain depends solely on the expected gain 
in resolving X to Y, and not upon the entropy associated with the "mixing" distribution, I. 

(5) For any positive integers k, s, and m, 5(km, sm) = 8(k, s) = ln(k/s). 
For uniform distributions, the information gained in finding sub-regions to be 

certainly target free is dependent only on the ratio of prior-to-posterior area, and not on 
the individual sizes of these regions. That is, there is one nit of information gain in 
narrowing from a region of size e to one of size 1, just as there is one nit of information in 
narrowing from a region of size 1 to one of size 1/e. In both cases, one nit of information 
would be required to inform which region (the smaller region or its complement) the 
target is in. 

(6)6(q,p) = -5(p,q). 
With time reversal, one obtains information loss (negative of information gain). 

Discussion of the axioms: 
The first axiom is a technical condition used to extend the theorem from distributions 
with rational masses to distributions with real masses. It requires that the function 8 has 
no jumps (i.e., 8(q, q*) tends to the value 8(p,p*) as q tends to p and q* tends to p*). 
This "smoothness" axiom seems entirely reasonable. 

The second axiom asserts that, for two cases with uniform prior distributions, 
where uncertainty is resolved to a given posterior distribution p* in both cases, the gain in 
information is greatest for the case with uniform prior over the most mass points. That is, 
a uniform prior distribution with more mass points has less "starting" information than 
has one with fewer mass points (hence giving more information gain upon resolving 
uncertainty to the posterior p*). 

For example, suppose we are calculating the information gains related to 
narrowing down the location of a given enemy unit to be within a fixed subset U of cells 
within the original area of concern. Considering two possible prior distributions, say one 
uniform over a large superset of U and another uniform over a smaller superset of U, the 
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axiom asserts that narrowing the possible location to one within U in the first case gives 
more information gain than that in the second case. 

The third axiom concerns the behavior of 5 when the prior distribution is regarded 
as a compound experiment. Consider p having masses {1/4, 1/4,1/3,1/6} where these 
masses represent the respective probability of four distinct outcomes of an experiment. 
Imagine the random variable Z represents the outcome of the experiment. We may, 
without changing the stochastic features of the experiment, break the experiment of 
observing an outcome on Z into an initial outcome on I which denotes whether the 
outcome is in the set associated with the first two masses or the second set of two masses, 
followed by a conditional experiment X giving the outcome within whichever of the two 
sets occur. Clearly, I has probability 1/2 of indicating the first set, and similarly for the 
second set. Given I indicates the first set, (conditionally) either of the two outcomes in 
the first set are equally likely, so the conditional distribution of X has probability 1/2 at 
each of these points. If I indicates the second set occurred, X has conditional probability 
2/3 of giving the first outcome in the set, and probability 1/3 of giving the second value. 
Thus the original experiment Z and the compound experiment I;X have the same overall 
probabilities of giving each of the four original outcomes, where we use standard 
conditional probability calculations in the second case. For example, the probability Z 
gives the third value in the original set, 1/3, is equal to the probability I indicates the 
second set occurred (probability 1/2) and conditionally X gives the first outcome in this 
set (conditional probability 2/3), so the overall probability of this outcome with I;X is 
(l/2)(2/3) = 1/3, as before with the experiment Z. 

The point is, we may, if we wish, view the experiment Z as a compound 
experiment I:X, where first I is observed, then conditionally a value of X is observed. 
Since 8(Z.l) may be viewed as the gain in totally resolving the uncertainty in the 
experiment Z, axiom (3) asserts the information gain in totally resolving the uncertainty 
in I;X (or Z) can be determined by adding the gain in totally resolving the uncertainty in I, 
and the average (over possible values of I) of the conditional gains in totally resolving the 
uncertainty in X, given each value of I. 

For the numerical example above, note 
6(Z, 1) = 2(l/4)ln(l/4) + (l/3)ln(l/3) + (l/6)ln(l/6), 

which may be seen to be equal to 
8(1,1) + E,8(X,111) = [2(l/2)ln(l/2)] + (l/2)[2(l/2)ln(l/2) + (2/3)ln(2/3) + (l/3)ln(l/3)]. 

The fourth axiom asserts one may view resolving the uncertainty with a prior 
distribution p to the uncertainty with a posterior distribution p* in terms of two 
information gain steps involving an intermediate distribution q. From the point of view 
of information gain from p to p*, it does not matter what intermediate distribution might 
have been attained through some portion of the information that resulted in resolving the 
uncertainty in p to that in p*. In our applications, the information gain is usually 
computed over each fixed time increment, At. Axiom (4) asserts we could obtain the 
information gain over At by adding the gains computed for the two increments of length 
At/2 making up At, for example. Thus, for example, the information gain over the period 
of a battle, t, may be computed by accumulating the incremental gains over time segments 
At; making up the battle period. 
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Operational illustrations of the third and fourth axioms are contained in sections 
I-l,(a')andI-l,(b'). 

III-2. Assumption of Independence Between Targets 
We note in the combinatorial setting that, in the case where targets are 

distinguishable and may occupy common areas, the sample space changes from that 
considered in Section 1-4. If there is no constraint on how many Red targets can occupy a 
cell, Red could deploy his forces in any of RN ways, where R is the number of cells in the 
area of concern. With a uniform prior, the initial entropy is then ln(R') = N ln(R). But if 
there was only a single target to find, the initial entropy would be ln(R), as a special case 
of the first equation in the preceding example. Thus it appears that for JV targets, with this 
sample space, entropy for all N targets is the sum of the entropies for the individual 
targets. This suggests a more general relationship exists between individual targets 
within the R possible areas and the combined array of N targets over the appropriate 
sample space. 

A sufficient condition for this additivity property is the independence of the 
positions of the JV individual targets. To see this, suppose the joint density function p(-) 
of the N target positions factors into the product of marginals: 

p(t„ t2, .... tiV) = p,(t,)p2(t2)...ps(ts). 
For simplicity of notation, denote vectors of //-values by t which can range over a sample 

space S. Then 
-ZteSP(t)ln(P(!)) = -Zp(0[ln(Pl(tl))+ ... + MpM)] 

= - Lpi(ti)ln(pi(ti)) -... - IPs(ylnfps(t^), 

so e; 2   N = ej + e2 + ... + eN, where "ef denotes entropy with respect to target /. That is. 

the joint entropy of the A''targets is the sum of marginal entropies of the respective 
individual targets. In applications, it might be possible to gain independence (at least 
roughly) by carefully defining what constitutes "areas" and "targets". For example. Blue 
might know Red deploys tanks in platoons of four tanks, so finding a single tank actually 
provides information about three additional tanks in the same vicinity. In this case, one 
might want to model the "targets" as tank platoons, rather than individual tanks. Locating 
a tank would then indicate presence of a platoon within some appropriate area, rather than 
precisely locating the platoon. 

We have investigated several numerical examples using bivariate distributions 
with varying levels of correlation, and it appears the correlation in target locations must 
be fairly large before entropy calculated by summing marginal entropies differs 
appreciably from the exact joint entropy. The following example illustrates this for a case 
with correlation about 0.2. 

Example: A Discrete Bivariate Distribution. 
Suppose there are R=2 areas, labeled "0" and "1", and suppose there are two 

targets, Tl and T2. Imagine Red deploys the targets such that, from Blue's point of view, 
the joint distribution of the location of (T1,T2) is in accordance with the following' 
bivariate mass function: 



P(t!,t2) 0 1 Pi(ti) 
0 .2 .1 .3 
1 .4 .7 

Pite) .5 .5 1.0 

The joint entropy is the sum over the four cells of the joint table of terms of the form -p 
ln(p), which gives 1.28. The marginal entropies for 77 and T2 are 0.611 and 0.693, 
respectively, which sum to 1.30. Note there is significant correlation between Tl and T2 
(p=0.22), as evidenced by the relatively larger mass values on the main diagonal of the 
table, yet the joint entropy is not greatly different from the sum of the marginal entropies. 

Now suppose intelligence is obtained indicating T2 may not be in position 0, such 
that the prior marginal probabilities are updated from (.5, .5) to (.4, .6). Then the 
posterior joint distribution becomes 

p(tl, t2) 0 1 Pi(ti) 
0 .16 .12 .28 
1 .24 .48 .72 

P2(t2> .4 .6 1.0 
where we note the marginal distribution of Tl has also changed, due to the correlation in 
Tl and T2 locations. The correlation between Tl and T2 remains 0.22. Now the joint 
entropy is 1.24 and the sum of marginal entropies is 0.593 + 0.673 = 1.27, which differs 
from the joint value by 0.03. However, the information gain, using the joint entropies in 
both cases is 1.28 - 1.24 - .04, whereas the value obtained using the sum of marginal 
entropies in both cases is 1.30 -1.27 = 0.03. We note the error in information gain 
associated with assuming independence, 0.01, is smaller than the errors in either of the 
entropy calculations (0.02 and 0.03, respectively). 

It should be noted the argument given at the beginning of this section is valid for a 
finite discrete joint distribution. In Section III-4 we give an example of a bivariate 
continuous distribution over a disc in the plane. One can define a uniform distribution 
over such a domain, assumed to be centered at the origin, in terms of independent random 
variables representing polar coordinates of the outcome. However the joint entropy, 
which is the sum of the marginal entropies of the random variables, is not the entropy of 
the original distribution uniform over the disc. This example shows caution must be 
exercised in exploiting independence in entropy computations with continuous random 
variables. 

Conditioning approach 
If the individual target positions are not independent, one can compute entropy 

using the joint distribution of the target locations, or one can sum entropies of conditional 
distributions instead of marginal distributions. It is always the case that the joint mass 
function factors into a product of conditional mass functions, so one can express the joint 
entropy as a sum of terms related to corresponding conditional entropies. The joint 
entropy is then given as the sum of expected values of these conditional entropies. For 
example, if X, Y, and Z are jointly distributed random variables, the joint entropy can be 



given by QX,YZ = ex + EX ey|x + EXT CZ|X,Y, where Ex denotes expectation with respect to 
the marginal distribution of X, eY|x denotes entropy of the conditional distribution of Y 
given X, and similarly for the other expression. (An outline of a proof of this is given in 
Section III-3.) Thus, in principle, we need only be concerned with entropy computations 
for univariate marginals and conditionals. Shannon's basic inequality asserts that a 
conditional entropy cannot exceed the corresponding unconditional entropy [7], so 
approximating the joint entropy by the sum of marginal entropies is conservative. That 
is, it will over-state the true entropy and hence we will tend to over-state the degree of 
apparent randomness remaining in Red's deployment. This was seen in the example 
above, where the sum of marginal entropies exceeded the joint entropy in both cases. 
Since we are concentrating on decreases in entropy, the amount of error involved in 
summing the marginal entropies for both the prior and posterior distributions may be 
negligible for practical purposes. Again, in the example above, we see assuming 
independence gave error in information gain that was much smaller than the respective 
errors in the individual entropies. 

III-3. Combining Entropy Measures in a Compound Experiment 
An implication of the third axiom of information gain given in Section III-1 is that 

in order to combine entropies in a compound experiment, one cannot simply sum the 
marginal entropies. To further illustrate this, imagine drawing a target type at random 
from a total set {1, 2,.., m}of target types, then determining the location entropy of a 
target of the selected type. Note targets of the various types may have different location 
distributions (obstacles and tanks aren't distributed over a piece of terrain in the same 
way, for example). Consider an indicator random variable I with possible values 1, 2,.... 
m, representing the outcome on drawing the type of target. Let erj denote the entropy of 
the compound outcome on I and location of the selected target, T, that is, with respect to 
the joint distribution of I and T. Similarly let e/, and e^i denote the entropy of the 
distribution of I and the conditional entropy of target location, given the outcome on I, 
respectively. Then erj = ej + Erfe^i), where "£/' denotes expected value with respect to 
the distribution of I. This can be motivated by a conditioning argument with the 
definition of entropy, as follows: 

eT,i = -YjPrjV'OHPr, /('»')) = -YiPrAt'OWPrMOPiiO) 

= -£ Z PTJ 0> 0 ln(Pi (0) - E X Pi (OP™ W 0 ln(Prj CI 0) 
it it 

= -X p, (/) Info (0) - X (X Pn/ (t\ i) Info,/ (4 0))p; (0 
/ i ^ t ' 

= e i + h,]\ej\i) 

This argument can be repeated for higher-dimensional cases. 
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III-4. Extension from Discrete to Continuous Distributions 

Univariate distributions 
The extension of the entropy concept to continuous distributions is not entirely 

straight-forward. Many authors have defined the entropy of a continuous distribution 
with density f to be 

- J/(x)-ln(/(x))ax, 
W(x)>0) 

which is closely analogous to the earlier definition for discrete distributions [4, 9]. For 
discrete distributions, e is a measure of the dispersion of probability mass over points, 
without regard to what those points are. Thus, if we form a sequence of increasingly fine 
discrete approximations of a continuous distribution, the sequence of corresponding 
entropies will increase without bound! 

To illustrate, consider a continuous uniform distribution over the interval [a,b], so 
f(x) = l/(b - a), for x between a and b. Then the above integral gives 

- )f(x) \n(f(x))dx = ljf^f- jdx = \n(b - a) 
a a 

(which, we note, is negative when 0 < b - a < 1). Now suppose we form a sequence of 
discrete approximations of this distribution, based on partitioning the interval [a,b] into n 
sub-intervals Ax of length (b - a)/n. Let us consider the approximating mass function that 
takes values pi = f(xj)-Axi = 1/n, where x; is the center of the i* sub-interval and Ax; is its 
width. The entropy of this discrete approximation is the maximal value attained with a 
discrete uniform distribution over n points, 

ln(„) = e = -JT/OOAx,. ln(/(x,)Ax,) = -JT]/(x,)ln(/(x,))Ax,. -£/(*,)Ax, ln(Av,) 

Now consider refining the partition and taking the limit of the terms on the right as 

n -» oo. The first term converges to - f/(x) ln(f(x))dx, the "continuous analogy" 

expression for entropy mentioned above. The limit of the second term, 

lim- Y f(x.) Ax, ln( Ax,) = - limn • - In( Ax) = lim[- ln( Ax)] 

diverges to +oc. Therefore, - \f(x) \n(f(x))dx is only part of the limit as we form finer 

and finer discrete approximations to f. Indeed, in the present case, the sequence of 
"approximating entropies" does not converge. 

Thus, from the point of view of extending the definition of entropy for discrete 

distributions, the expression - J/(x) \n(f(x))dx may not be appropriate for measuring 

information. However, since the term -ln(Ax) adds out in the computation of information 
gain, integrals of this form may be employed in computing 5for continuous distributions, 
with an interpretation identical to that for discrete distributions. 

Some interesting conclusions result from such models. For example, suppose the 
prior distribution of location of a certain target is continuous uniform over an interval 
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(1, 5) and information is received that shows the target cannot be in the interval (3. 5), so 
it must be uniformly distributed over the interval (1, 3). Then the information gain is 
ln(4) - ln(2) = ln(2). If subsequent search clears the interval (2, 3), the target distribution 
is updated to uniform over the interval (1,2). The information gain this time is ln(2) - 
ln(l) = ln(2), same as in the first step. However, note in the first step a region of length 2 
was cleared, while in the second step a region of length only one was cleared. (This is 
related to the result in the mobile target example, in Section III-5, that the information 
gain curve is independent of the target movement rate, r, and is a direct analog of the 
result for discrete uniform distributions discussed in Corollary (5), Section III-l.) 

Exponential example 
Let us illustrate the foregoing with a second example. Consider an exponential 

distribution with parameter X and note 

- £ f(x)\n(f(x))dx = -£*£-** [\n(A) - h:]dx = -ln(/l) +1 = 1 + -ln(<r), 

which is negative for sufficiently large X (i.e., small variance, <f). Suppose a change in 
information status can be represented by a change in the parameter to X*. Then the 
information gain is 

b(X,X*) = ln(X*) - ln(X) = In(XVX) = (l/2)ln(cr/a*:) > 0 if and only if o*2 < <r, 
so information gain is positive in this case exactly when the posterior distribution has 
smaller variance than had the prior. The fact that the integral above can be negative does 
not affect the interpretation of the information gain. The comment on positive gain 
remains valid even when the variances involved are both smaller than 1/e", so that the 
individual integrals are negative. 

Multivariate considerations 
Caution must be exercised in computation of entropy for two- and higher- 

dimensional continuous distributions. If X and Y are independent jointly uniform over a 
rectangle in the plane defined by opposite corners (0.0) and (a,b), the double integral 
defining the entropy of (X,Y) gives 

ex,Y = ln[(a - 0)(b - 0)] = ln(area of rectangle) = e\ + ey, 
as expected. For a uniform distribution over non-rectangular region. R, of two 
dimensions, one may argue as follows. Approximate the distribution by forming a 
"partition" of the region into Ax A squares, such that a limiting process (as A gets small) 
will provide exact coverage of the region. There are approximately [area(R) / A-"] of these 
squares. Now let I be an indicator variable in a compound experiment, where I chooses 
which of the squares to sample, and. given the value of I, (X.Y) is an outcome distributed 
uniform over the chosen Ax A square. Then by Axiom (3) of Section III-l, 

eR = e, + Eex.Y|i = ln(area(R) / A2) + Ei(ln A2) = ln(area(R)). 
again as expected. 

Now consider a uniform distribution over a circle C with center at the origin and 
radius ro. The entropy of this distribution, by the above argument, is In(:rro2). Let R and 
0 be jointly distributed random variables such that (R,0) has a joint density function 
which is uniform over C. Then R has the "triangular" density f(r) = 2r/ro2 = kr (where 

40 



k = 2/ro2), for 0 < r < r0, and 0 has density g(9) = 1/2*; 0 < 6 < 2*. It follows the 
"marginal" entropies of R and 0 are, respectively, 

eR = ro8/16[ln(r0
3/2)-l/2]      and     e© = ln(27i). 

It is immediately obvious that the joint entropy over the region C, ec, is not equal to 
eR + e0 in spite of the fact that the random variables Rand© are independent! Now,by 

Axiom'(3) of Section III-l, it is true that ec = eR + ERe0|R, regardless of independence. To 
compute ERe0,R, first consider the region within C associated with a given value r, ofR. 
As 0 varies over its range, a circle with circumference 2m is swept out. Thus, for R - rr 

the conditional entropy associated with 0 is e0|R = ln(2rcr)r and the expected value is 
'b r° 

ERem = \\n(2nr)f{r)dr = ln(2*) + \kr ■ \n(kr)dr - ln(Ä:) 
o ° 

= ln(-^) - eR = \n{area(C)) - eR. 
2/r0" 

Then ec = eR + ERe0|R = area(C), as should be the case. 

A caution about continuous random variables 
The forgoing example illustrates the fact that even though R and 0 are 

independent, it may not follow that e0|R = e0 nor does it follow that ec = eR + e0, so in 
particular ec * eR 0. Dilemmas such as this illustrate the fact that, in using continuous 
random variables, we inherently establish a coordinate system. For example m the 

exponential (with parameter X) example above, we saw the entropy is 1 - ln(X). But X is a 
scaling parameter; choosing a value of this parameter is equivalent to choosing a scale for 
the coordinate system used to represent outcomes on the exponential experiment. This is 
not consistent with the observation that, with discrete distributions, entropy depends only 
on probabilities. Note, however, in the exponential example, the information gam, 
ln(XA*), is unaffected by changes in scale. In Section III-6, we show this is true in 

genera ^ ^ ^ continuous modeiSj caution must be exercised lest values of 

outcomes of experiments enter into evaluations of entropy (which should depend only 
upon probabilities of outcomes). The same is true for calculations of information gain, 
although in some cases effects of an implicit selection of coordinate system add out m 
this case. In general, for computations of information gain in applications, it is good 
insurance to form discrete approximations of any continuous distributions involved. This 
should help eliminate the potential for gross errors such as might well have occurred in 
the precedina example involving a continuous distribution over a disc in the plane. The 
probability contour maps in the application discussed in Section II-4 defined continuous 
bivariate distributions that were subsequently converted to discrete mass functions 

precisely for this reason. 

III-5. An Example Application to Mobile Targets 
It seems reasonable to take into account the age of location information, li-a 

mobile taraet is located at some point in time, one does not know its location at a later 
time assuming no information about its location has been received in the meantime. 
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From a Bayesian updating point of view, the "spike" of probability at the target's location 
when it is located begins to "melt" with the passage of time. Based on the target's ability 
to move in the neighborhood of its location, the probability the target is in neighboring 
cells begins to grow as time passes. If we imagine a plot of uncertainty about the target's 
location versus time, we would expect the curve to increase in some fashion. 
Alternatively, cumulative information gain should become more negative as time 
increases. But what might be the shapes of these curves? 

A simple model 
We illustrate how a relationship between information gain and time might be 

established, using as an example a simple model of how the target might move. Suppose 
a certain target located at the point (0,0) on a certain terrain could move at average rate r 
in any direction, and could change directions at random times. We imagine the location 
(X, Y) of the target after t minutes is distributed bivariate normal, with mean (0, 0) and 
covariance matrix cr2I (as would be expected by a diffusion approximation argument). 
We link <r to the average rate r and time t as follows: the target must be within a circle 
of radius it; suppose rt/2 is the median distance of the target from (0, 0). Since 
(X + Y )/o- is chi-square distributed with two degrees of freedom (that is, exponential 
with parameter 1/2), it follows the median of (X2 + Y 2

)/CT
2
 is 21n(2), so the median 

distance of the target from (0, 0) is cr(21n(2))1/2. If we set this equal to rt/2. it follows that 
a2 = (rt)2/81n(2). 

For a (univariate) normal distribution with parameters u and a2 the entropy is 

oo 

-1- 
>2 

&T-       r-      1 
J —r=^e' 2c? (M^\2ncy)-—^(x-n)z) dx = ^(l~ln(2^)^ln(o). 

(We note, in a normal distribution, entropy increases linearly with the logarithm of 
variance and does not depend on the mean.) For a bivariate normal withindependent 
components (inherent in the assumed form of the covariance matrix), by the result in 
Section III-2, the joint entropy of X and Y is thus two times the marginal value shown 
above, or ex,Y = 1 + ln(2u) + ln(cr2). Setting cr2(t) = (rt)2/81n(2) gives entropv of tareet 
location at time t, e(t) = 1 + ln(27c) + Zfo(rt) - In(81n(2)). The cumulative information 
gain, say from initial time to > 0 to time t > to. 5(to, t), is then given by 

S(to, t) = 21n(rto) - 21n(rt) = 2In(to/t), for t > to. " 
We see the shape of the information gain curve is therefore like -ln(t2), independent ofrl 
The information gain rate at time t is given by 

limat->o 5(t, t + At)/At = 21imAt_»0 [ln(rt) - ln(r[t + At])]/At = -2/t. for t > t0. 
Of course, if the initial time to is chosen so the "area of uncertainty"' is of fixed 

radius, then the information gain from time to to time t does depend on target averace 
movement rate. For example, if we choose to = I/r, then 6(1/r. t) = - 2In(rt) = ln(I/rt2) 
fort>l/r. 
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With other models of how the distribution of target location expands with time we 
obtain similar results. For example, if the location of the target t hours after it is located 
is assumed to be uniform over a circle of radius rt, then the entropy is proportional to the 
area of the circle, so information gain from to to t is the logarithm of the ratio of the area 
containing the target at time to to that containing the target at time t. That is, in this case 
also, 8(to, t) = 21n(to/t), again independent of r. This result may seem counter-intuitive, at 
first, but it is consistent with a similar result stated as Corollary 5 in Section TJI-1. It can 
be motivated and illustrated by considering the number of nits of information required to 
narrow the location area to some fraction ofthat area, thinking in the reverse direction. 

III-6. Functions of Random Variables 
The information gain from p to p* can be viewed in terms of prior and posterior 

random variables X and X* having these respective distributions, in some cases. In 
certain applications, it could be of interest to consider some function, g, of these random 
variables. In principle, one could find the distributions of g(X) and g(X*) and proceed as 
usual, but in many cases this step is not necessary; one may obtain information gain 
directly. 

Consider an example related to the mobile target model described in Section EJ-5, 
where we know the entropies of X and X* but want the information gain going from X2 

to X* . If the distribution of X is continuous, with density function f having support 
(0,co) or (-00,00), the density of X2 is given by f2(r) = f(Vr)/2Vr; r>0. Then the entropy of 
X2, ei, is given by 

*2 =-J^^VF)lnt^/(^:)^ 
= jln(2VÖ/(V^W7- J/(v7)ln(/(VF))^ 
= Ex ln(2 X) + ex 

More generally, suppose g' > 0 on the support of f (still assumed to be (0,oc) or 
(-00,00)). Then 

fg(x)(r) = f(g-1(r))/g'(g-\r)) 

so 

eg(X) 
-> (5) 

Ex\ng{X) + ex 

Examples 
1. g(X) = FX(X). As a verification of expression (5), consider the case where g is 

the CDF, F, of X. We know, by the probability integral transformation, that F(X) is 
distributed uniform over the interval (0,1), so by the expression obtained in Section ITI-4, 
it follows that eF(x) = ln(l) = 0. By the preceding expression, this is equal to 

Ex(ln(F'(x))) + ex = Exln(f(x)) + ex, 
so it follows that 

ex = -Exln(f(x)) = -J (ln(f(x)) f(x) dx; 

43 



consistent with the definition of entropy for continuous distributions. 
2- g(X) = e' or g(X) = ln(X). If X has continuous distribution with mean \x and 

Y = ex = g(X), then ln(g'(X)) = X, so the entropy of ex is u + ex. Similarly, if X has 
support contained in (0,oo), ein(X) = ex - Exln(X). 

3. 5(X,Y) is invariant under location and scale changes. If g is a linear 
transformation, say g(z) = az + b, then eax+b = In(a) + ex and eaY+b = ln(a) + eY, so 
8(aX+b,aY+b) = 5(X,Y). Thus, while the re-scaling part, a, of the transformation (but not 
the re-locating part, b) effects entropy, it does not effect information gain. 

The preceding can be extended to 1-1 transformations of jointly distributed 
random variables, using standard methods with the Jacobian of the transformation. For 
example, for a bivariate case, suppose Xi and X2 are jointly continuous with density f 
over the real plane, and suppose Y, = g,(Xj, X2) and Y2 = g2(X,, X2) is a 1-1 
transformation whose inverse is given by x, = h,(y,, y2); x2 = h2(y,, y2), valid over some 
two-dimensional domain D contained in the real plane. A standard result of probability 
theory states the joint distribution of Yi and Y2 is given directly by 

/V, .K2 (JM >yi ) = /(*i iy\ ,yi ).*2 (y\ >yi ))\J(y\ ,y2 )l; (y\y2 ) e D 

where |J| is the absolute value of the 2x2 determinant J = | oh, ldy) |, which is the Jacobian 
of the transformation. The joint entropy of Y] and Y2 can thus be expressed as follows: 
eYlj2 = ~ J J /Vi.Kj iy\,yi) ■ ln(/r,,r2 (y\,y2 ))dy\dy2 

D 

= - \\fWyhy2)'h(y\<y2))\J(y\,y2)\Un(/(h{(yhy2).h2(yl.y2)))+\n(\J(yl,y2)\)]dyldy2 

= ~ ]yn(\J(yi,y2)\)Ahl(yuy2),h2(yl,y2))\J(yl,y2)\dyldy2 - 

^yn(Ah\(yi,y2lh2(yi^y2)))f(hi(y[,y2),h2(yuy2))\J(yl,y2)\dyldy2 

= ~EYlj2ln(\J(YuY2)\+eXuX2 

= EX]X2 H\J~HXi,X2)\) + eXtwXi, 

where J"1 is the Jacobian of the inverse transformation, -| 5g, /dxj \. 

Example: transformation from cartesian to polar coordinates 
Suppose X[ and X2 are independent and identically distributed as N(0,1). Then by 

results shown in the preceding section, the joint entropy of X, and X2 is 1+ ln(27t). 
Now suppose Yi = X,2 + X2

2, the squared radial "distance" from (0,0), and 
Y2 = Tan" (X2/Xi), the "radial angle," so the region D is [0,X)X[0,2TT). We note Yj has 
entropy ln(2) + 1, by the fact that Yi is a sum of squares of independent standard normal 
random variables, hence has a chi-square distribution with two degrees of freedom, which 
is an exponential distribution with parameter (1/2), whose entropy was computed in 
Section III-4. We note further that the radial angle Y2 is uniformly distributed over the 
interval [0, 2n), so its entropy, ln(27i-0), is also given by an expression in Section HI-4. 
Finally, we observe that Yi and Y2 are independent, so we expect the joint entropy.of Yi 
and Y2 will be of the form [ln(2) + 1] + ln(27t). Let us illustrate how this value can be 
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obtained directly from the transformation and the joint entropy of Xi and X2, using the 
result above. 

Note the inverse of the above transformation is 

Xl = V?cos(72); 

X2=^sin(Y2), 

so the Jacobian is 

J = 

1 

2^ 
1 

2^ 

cos(y2)  -^sin(v2) 

sin(v2)    ^cos(y2) 2 

Then it follows by the result above that the joint entropy of Yi and Y2 is given directly by 
eriiK2=^iX2ln(|J-,(X1,X2)i) + eXi>X2 

= E XiJi 
ln(2) + (l+ln(2^-)) 

= (ln(2) + l)  +  ln(27r) 

= ev +  e Y,   > 

in agreement with the anticipated value. 

These ideas can, of course, be extended to higher dimension spaces, and 
transformations that are piece-wise 1-1 over regions forming a partition of the plane. In 
some cases, the resulting integrals do not converge, as can be seen by considering 
g(X) = ex, where X is distributed as t with one degree of freedom. In other cases the 
results can be somewhat novel, as is the case for the entropy of the radial miss distance, 
VYI in the above example. In this case, by the result at the beginning of this section, 

e rr = Ey ln(—p=) + eY 
&       J'     2^       * 

= - ln(2>/2) - |° (ln(0)e"' dt + eYi 

= -ln(2V2) + r + ln(2) + l 

= l-ln(v/2) + r, 
where y is Euler's constant (y « .5772). 

III-7. Information Gain Rate, 8', with a Fixed Prior 
The fourth axiom of information gain and the sixth corollary (Section III-1) 

combine to simplify the expression for the derivative of 5(p,p*(t)), where we imagine a 
fixed prior p(t0) at a fixed time to, and a posterior p*(t) that changes with time t > to- In 
this case we may regard 5 to be a function oft, written as 5(t0,t), and the derivative can be 
written as 
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At 

__]im       *(P('o),P*(0)-<?(pfr0),P *(' + */)) 
A/ 

--lim        -<% * (/), P(r0)) - S(p(t0), p * (/ + AQ) 
At 

_,- *(p*(Q,P*ft + A/)) 
At 

We note the last expression above does not depend on the prior, p(t0), as should 
be the case. To find the information gain rate, one need only measure the gain from t to 
t + At, using only p*. 

Example for a discrete case. 
As a specific example, if the distribution p*(t) is discrete, so the entropv of the 

posterior distribution is -Zp*i(t)ln(p*j(t)), we obtain from the preceding expression 
5'(to,t)= 

_ Iim        -I>*,(0'"(/?*, (0) + Z P *, (' + AO HP *, U + At)) 
— mI1A<->0 "  

At 
= Y Hm       /?*i(^ + A/)ln(/7*l(r + AQ)-^*i (0 \n(p, (t)) 

At 

= ZJ;P*.(0Hp*,(t)) 

= 5> *'(')[!+ ln(p*I(0)] 

which can be verified directly by taking the derivative of 
-Epi(to)ln(pi(to)) + Ip*i(t)ln(p*i(t)), exploiting the fact that the prior entropy is constant. 
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